Ora, con la corrispondenza biunivoca fra insiemi possiamo riuscire a definire l'insieme infinito Definizione:
Esempio: considero l'insieme N dei Numeri Naturali N = {1, 2, 3, 4, 5, ....} e considero l'insieme dei numeri naturali pari N2 = {2, 4, 6, 8, 10, ....} I due insiemi sono in corrispondenza biunivoca perche' ad ogni numero in N corrisponde il suo doppio in N2 e ad ogni numero in N2 corrisponde la sua meta' in N
Quindi l'insieme N, essendo in corrispondenza biunivoca con una sua parte, e' un insieme infinito Potevo metter in corrispondenza biunivoca i numeri di N con i loro tripli oppure con i loro multipli per 10... eccetera Questa di poter mettere in corrispondenza biunivoca un insieme infinito con una sua parte e' la prima fra le tante proprieta' sorprendenti dell'infinito, vedrai che, procedendo ci sara' di molto peggio.... |
![]() |
![]() |
![]() |
![]() |